Self-Supervised Deep Subspace Clustering for Hyperspectral Images With Adaptive Self-Expressive Coefficient Matrix Initialization
نویسندگان
چکیده
Deep subspace clustering network has shown its effectiveness in hyperspectral image (HSI) clustering. However, there are two major challenges that need to be addressed: 1) lack of effective supervision for feature learning; and 2) negative effect caused by the high redundancy global dictionary atoms. In this article, we propose an end-to-end trainable HSI Specifically, ensure extracted features well-suited subsequent clustering, cluster assignments with confidence employed as pseudo-labels supervise learning process. Then, adaptive self-expressive coefficient matrix initialization strategy is designed reduce redundancy, where spectral similarity between each target sample neighbors modeled via k-nearest neighbor graph guide initialization. Experimental results on three public datasets demonstrate proposed method. particular, our method outperforms several state-of-the-art methods, achieves overall accuracy 100% both SalinasA Pavia University datasets.
منابع مشابه
Unmixing Hyperspectral Images with Fuzzy Supervised Self-Organizing Maps
We propose a powerful alternative to customary linear spectral unmixing, with a new neural model, which achieves locally linear but globally non-linear unmixing. This enables unmixing with respect to a large number of endmembers, while traditional linear unmixing is limited to a handful of endmembers.
متن کاملSelf-Expressive Decompositions for Matrix Approximation and Clustering
Data-aware methods for dimensionality reduction and matrix decomposition aim to find low-dimensional structure in a collection of data. Classical approaches discover such structure by learning a basis that can efficiently express the collection. Recently, “self expression”, the idea of using a small subset of data vectors to represent the full collection, has been developed as an alternative to...
متن کاملClass Probability Propagation of Supervised Information Based on Sparse Subspace Clustering for Hyperspectral Images
Hyperspectral image (HSI) clustering has drawn increasing attention due to its challenging work with respect to the curse of dimensionality. In this paper, we propose a novel class probability propagation of supervised information based on sparse subspace clustering (CPPSSC) algorithm for HSI clustering. Firstly, we estimate the class probability of unlabeled samples by way of partial known sup...
متن کاملHigh-Rank Matrix Completion and Clustering under Self-Expressive Models
We propose efficient algorithms for simultaneous clustering and completion of incomplete high-dimensional data that lie in a union of low-dimensional subspaces. We cast the problem as finding a completion of the data matrix so that each point can be reconstructed as a linear or affine combination of a few data points. Since the problem is NP-hard, we propose a lifting framework and reformulate ...
متن کاملA Self-Training Subspace Clustering
Accurate identification of the cancer types is essential to cancer diagnoses and treatments. Since cancer tissue and normal tissue have different gene expression, gene expression data can be used as an efficient feature source for cancer classification. However, accurate cancer classification directly using original gene expression profiles remains challenging due to the intrinsic high-dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2021
ISSN: ['2151-1535', '1939-1404']
DOI: https://doi.org/10.1109/jstars.2021.3063335